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ABSTRACT

The theory of finite Fourier transforms is developed
from the definitions of irnfinite transjiorms and applied to
the computation of convolutions, correlations, and power
Detailed procedures for these computations are

istings and writeups of FORTRAN subroutines.

spectra.

given, including 1



1. INTRODUCTION

series based on the Cooley—Tukey (References 1,2) hyper-rapid
Fourier transform method. Using this method, computations on
seismic array data such as the calculation of convolutions,
Correlations, Spectra, and digital filters have been speeded up
by fa~tors of three or four ang Sometimes even ten. The Purpose
of this report is to Communicate these results in a straight-
forward manner and to offer Some motivation for their derivation
as well as for future efforts in this area. Writeups and
listings of the Programs discussegd here are included as appendi-

ces to this report.

¥ THE FINITE AND DISCRETE FOURTER TRANSFORMS

In the case of continuous data of infinite length, the

Fourier transform pair is,usually written as:

a(w) = L . £(t),"1Wt 4
Vgn {; *

(1)

£(t) = L1 f "'A(w)Liwt i
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The first of these, going from time to frequency, is referred
to as the direct transform and the other as the inverse trans-
form. Somet;mes the direct transform is written with a factor
of 1 in front of the integral and the inverse with a factor of
1/2n . These are of course equivalent to the above definition.
Usually the quantities of interest, such as spectra, etc.,
involve magnitudes or sgquares of one transform and the factor
must be inserted or taken out, depencding on which definition

is used, to preserve true ground motion.

Two drawbacks of these definitions for digital compu-
tations are apparent: First, the integrals must be approximated
by sums in the digital computer, which implies that both trans-
forms involve sampled variables. Second, the infinite limits
on the sums are impossible. Clearly these sums must truncated,
as they do not in general converge over a finite interval.

As a result Fourier transforms as such are never really com-
puted by a digital computer. Instead, the complex samples of

a direct transform are approximated by the cosine and sine
coefficients of Fourier series representation of the input data.

The definitions for these are:

if x(t) = 2 [an cos {mnt/T) + bn sin (wnt/T)] , (2)
n=0
T
: 5 2
then a_ = JO x(t) dt b =0 (3)
T
a = % Io x(t) cos (mnt/T) dt




T

b = 2 f x(t) sin (mnt/T) dat

n T
o

If N samples of the data are taken at equally spaced

intervals At = T/N, the integrals (3) becomes sums, and the

frequency sum in (2) goes from DC to the folding frequency,

i.e., 0 to N/2T . The equations are then written as:

N/2
x(j) = Z [ak cos(2mjk/N) + bk 51n(2njk/N)]
k=0
' (4)
N-1
-1 & =
a N z: x(3) bo 0
j=0
N-1 N-1
_2 . . _2 T
B z x(j) cos(2njk/N) bk - z x(j) sin(2mjk/N), (5)
i=0 j=0
where t has been replaced by jAt . By now defining:
A(k) == (a, - ib) Alo) =a_ (6)
2 k k' o]

and realizing that a real time series contains only real

points, (4) can be written as:

N/2
x(3) =) A(k) exp(2mijk/N) . (7)
k=0

A great deal of symmetry between the two transforms can be




preserved if the sum 1n (7; 1s summed up to N-1 . Redundant
points in the spectrum are included (since the transforms are
periodic) but the cowputational procedures are simplified.

It is also convenient to split thz factor of 1/N appearing in
(5) into two factors of 1//N , one in front of each transform.

By defining a complex number.

w = exp{2mi/N) , (8}

the two transforms can now be written as:

N-1

Ay =L gy W (9)
N
N-1

f(j)=7; J o AK) L (10)
k=0

It can be shown that the set of direct Fourier transform
points. between DC and the folding frequency, contains the same
amount of information as the real data series: The transform
includes N/2 distinct points, which with the DC term makes a
total of N/2 + 1 complex points. Equation {9 shows that both
the DC and the folding frequency point are purely real: thus,
the Fourier transform contains (N/2-1)}%242*1 numbers. This is
exactly the same amount of information contained in the real
time series. It also suggests that the existence of one trans-

form should imply the existence of the other.

1f there are N/2+1 non-redundant points in the direct

transform, then the sampling interval in fréquency must be




(N/2T)/(N/2) = 1/T . Thus, the product of the time and frequency
variables is:

iwt = i 2mj % X % = Zgi 3k (11)

This equation relates the arguments in the two exponentials,

one in the continuous transform and the other in the finite

transform (Equations 1, 9, and 10).

B. TWO-AND THREE-DIMENSIONAL FOURIER TRANSFORMS

Two-and three-dimensional direct Fourier transforms are
seen to be

Nl-l N_.-1
J - -4 K -j.k
A(k, ,k,.) = L Z % x(J,J)leleZ (12)
12 B L 172" "1 2
172 3.0 §_=0
1
and
Nl-l N2—l N3—l
' " ) -3k
Ak, ,k_,k.) =—1 Z ? Z x(3.,9,,5.0w. 7151
17273 3,=0 3,=0 35=0
— gk ~ ik .
1
W, 2 W, 373 (LB
We can break up Equation (12) as follows:
N2—l
L _ -i.0k "
Alk k. ) = — Z B(k.,3.) w225 (14)
1 2 Jﬁ_ 1 -2 2
2 j,=0



P
This calculation requires Nl one-dimensional transforms; we

have defined

1 -1

. 1 . I -j.k
B(k.,j,) = — z: x(3..9.) w, 2151, (15)
1 2 e 1°-2 1

l J == .

) 1 : ‘
which requires N2 one-dimensional transforms. Thus, Nl + N2
one-dimensional transforms are required to compute the single

two-dimensional transform.

We can break up Equation (13) as follows:

-1
3
Ak, k, k) = - Z Clk, k,y3,) w, 933 (16)
1723 SR 3
3 J =
3
which requires NlNZ one-dimensional transforms: We have de-
fined
. Ny -1 Nyl
. . . -j.k
Cli kydg) =—=— Y ) x(3i.3,.3, w 1R
123 SN 1 -2 -3 1
172 j =0 j,=0
-j .k
w, 7272 (17)

2

whicbh requires N3 two-dimensional transforms. Thus, N1N2 one-

dimensional transforms and N3 two-dimensional transforms are

needed to compute the single three-dimensional transform.
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4. ALGEBRAIC DISCUSSION

Equations (9) and (10) suggest a more elegant and compact

way to write the two transforms. We define the vector A as

the transform with elements (A)k = A(k), and define the vector

F as the time series with elements (F)j = F(j) . The process
of fransforming is seen to be equivalent to matrix multipli-
cation by a matrix W whose elements are (W)jk = ka
+
A=WTf (18)
and f = WA , , (19)

.. . . . I : .
where the dagger indicates Hermitian conjugation. Substituting

(19) into (18) gives the following important identity:

+ +

WW =WWwW=1I . (20)
This is the definition of unitarity for the transformation W .
It is a generalization of orthogohality for complex matrices

and assures Parseval's theorem:

-

+ +
AA=f f . . (21)

W preserves "length" between the two domains. The identity is

actually proved by writing out the terms in the product:

e jm mk :
%‘ Z [exp(2ni/N)] [exp(-2ni/N)] = éi ,
m=0



or

N-1

. . |
: ) L 5) . (22)
m=0

This last important relation is seen to be true by the use of

a phase diagram:

20 25
W W
wld —— Ya for j -k =5and N = 6 .
10 5
W W

.~The Cooley-Tukey method factors the W matrix, if it is

a power of two in order, into L + 1 sparse matrices, where L

is the power of two:

W = SL SL-l 000 Sl So 0
Multiplying L + 1 times by these sparse matrices can in this
case reduce the computing time by many tens of times. The

factorization is proved by Good(4) and organized for computation
by Rader(3). i

5. HIGH-SPEED CORRELATIONS AND CONVOLUTIONS

\
By computing Fourier transforms with this finite Fourier

series-like method an important condition is put on the time

series. As in regular Fourier series the input is assumed to

= 1 b e LY,



be periodic with period T and the integrals cr sums are com-
puted over a single period. There is also the effect of
cutting off the spectrum at the folding frequency. Sines and
cosines of finite wavelength will repeat again outside the
region of interest. This fact in itself is not bothersome but
becomes a serious complication in the computation of convo-
lutions and correlations. Convolutions and correlations as
usually computed assume the time series to be zero outside the
region of interest. Therefore the integrals or sums in com-
puting them are summed out only over the non-zero region of
interest. When multiplying together two finite Fourier trans-
forms (or the complex conjugate of one times the other) the
periodicity of the time series means that elements which have
been shiftedwpast the end of a period reappear at the be-
ginning. ‘This process is therefore called circular convo-
lution or correlation and its effects are unavoidable when
straightforwardly computing lagged products with finite Fourier

transforms. This 1s illustrated below:

1
X2 = (-2, 2, -1, 2) |
Ri2 = (1, 5, 3. -1) for 100% positive lags;
= (1, -1, 3, 5) for 100% negative lags.

Circular convolution is therefore written:

T-1
Rij(t) = 21 Xi(T) xj(t + 7T) (23)
T=0



where x (t + T) = x (t) for all m
m m

The proof that this is equal to the transform of the

product of the two finite transforms follows below:

T-1 T-1 T-1
Z R,.S(t) wt* 2 Z x. (1) x,(t + r) w tk
ij 1 J
t=0 t=0 T1=0
T-1 T-1+7
-(g~-1)k
- z: xi(T) xj(q) w (a-1) qa=t+ ¢
=0 g=r
T-1 T-1
= §‘ x, (1) wtk E: x.(q) w-qk
(i 1 J 0
=0 g=0

* o
=A, (k) A, (x) .
1 J
/
On the other hand the transient correlation is defined
by the following:
T-1~-t

RijT(t) =) x; (1) X (¢ + )
T7=0

(25)

where the upper limit on the sum simulates the desired zeros

in the time series outside the region of interest.

This is il1-
lustrated below:

- 10 -




1
x2 = (-2I 21 _11 3)
nc ..
Rlz = (1, -4, 6, -4) for 100% positive lags;

(1, 3, -3, 9) for 100% negative lags.

The finite Fourier transform of this R'C is thus not the product
of the two individual transforms. However, by filling zeros
into the second half of each data series and computing their
transforms out to twice their actual length, a good estimate of
the spectrum may be obtained. 1In addition, the negative lags
in the correlation appear, thus giving a more mathematically

satisfying result. This is illustrated below:

X = (3, 0, -11 21 0; OI Or 0)

1
X2 = (-2, 2, -1, 3, 0, 0, 0, 0)
R = (1, -4, 6, -4, 0, 9, =3, 3) for 100% positive lags.

12

The two modified transforms thus are:

27-1
F (k) = Z X, (t) w tE X.(t) =0, T <t <2r-1
1 1 1 -
t=0
27-1 27-1
* tk -tk
5,00 = F ()" F (k) = z X, (t) w Z X;(r) w
t=0 T=0

1500 =



R® (s = F (k) F (k) w° =
1] 1 J
k=0
27-1 27-1 am_]
+S=-1) . ‘
}: Z X it) X () Z Wi (t¥8=1) (26)
i j
t=0  1=0 k=0

Now from (22) the last sum becomes a Kronecker delta function

and the other sum is collapsed to give:

27-1
R, (s) = } X (t) X (t+s) = R, (s) .
ij /W j 13

£=0

The last equality following from the original assumption that

Xi(t) =0, T <t <2T7-1 . Transient correlations for 100%

lags are therefore computed by forming the absolute product of
two transforms, each computed out to twice the length of the

original data series with zercs filled into the second halves.

Non-circular or transient ccnvolutions are computed 1in
much the same way, except that the transforms have to be com-
puted out to a length equal to the sum of the lengths of the
time series and the filter, with the appropriate number of zercs
filled i1nto each. The convolution theorem 1s proved 1in the

same fashion.

T+S-1
A(k) = Z a(r) w TE alr) =0, S<Tt<T+s8-1
=0

- 12 -

L =




T+S-1

Xik) = z x{t) wtk X(t) =0 T<+<T+S-1
£=0

T+5-1 T+S-1 T+S-1 T+S-1

L] — N k— _—T -

7oAt ER) W= )Y arn) x(e) Y e [t
k=0 (=0 t=0 k=0 |
T+S-1 T+S-1

ku .

}" A(k) X(k) WO = y a(t) xfu-t) = y(u) (27)

k =0 r=0

Where y(u) is now the "filtered" output of the filter a acting
on X. Convolutions are therefore computed by forming the product
of the two transforms, each computed out to a length equal to
their sum with zeros filled into the extra lengths. Detailed

procedures for these computations are listed in Appendix C.

- 13 -
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APPENDIX A - PROGRAM LISTINGS

FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATION TO THE
COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA




ﬂC’ﬂ(’OC’OC’OC)ﬂC’O(’ﬂC’ﬂC’ﬂ‘1ﬂ¢7ﬂ€)ﬂ€)ﬂ¢)ﬂ(’ﬂf’n¢3ﬂ¢7ntﬁntﬂﬂC’ﬂf)ﬂf)ﬂ(’ﬂt’ﬂ(’ﬂ(’ﬂf)OC’O

0y 16 ¢0

SUBRUUTINE CODLEN,XsSIGNI)

HYPER=RAPLID PUURIFR THANSFOUKM USING COOLEY=TUKEY ALGOR] THM

SEISMIC UAYA LABORATURY, ALEXANURIA, VA, PROGRAMMED
26 FEBRUARY 1Y66 BY Je Fo CLAERBOUT (MIT), D, ¥, MCCOWAN,
Eoe Ae FLINN, AND Jo GIBSON (TELEDYNE)

X IS 4 COMPLEX ARRAY USED FUR THE DATA SERIES AND THE

N
TRANSFORM » THE NUMBEK OF ELEMENTS OF X IS L = 2
SIGN ® eg.q PUR DINFCT FOURIEK THANSFORM AND ¢3,9 FOR INVERSE
FOURIER TWANSFORM (BUT SEE BELOw FOR ARRANGEMENT OF DATA FOR
INVERSE ITRANSFORM),

FON DIRECT TWANSFNRM, ON INPUI THE REAL PAKT OF X CONTAINS THE
DATA SERIES AND THE IMAGINARY PART OF X IS ZERO, ON RETURN,
THE FUURIER LUSINE SERIES EXPANSIUN OF THE DATA IS IN THE REAL
PART UF X, ANU TKE FOURIEW SINE SERIES EXPANSION IS IN THE

N-1
IMAGINARY PAKRI OF X, E&ACH UONTAINS ONLY 2 + 4 NONREDUNDANT
PUINTS, THE GOSINE EXPANSION IS SYMMETRIC ABOUT POINT NUMBER

Ne

2 ¢ 4 AND IME SINE TRANSFORM 1S ANTISYMMETRIC ABG::
THIS POINT,

FOR ‘EXAMPLE ® N ® 3 ANU DATA = (gesdeegergesgevgesrgerele
THENVKEAL P‘h' OF X = (00'1'PU'10010"OOIOO'0') AND IMAGINARY
PART OF X = ‘U.og.pooloo:UoDQOvno'oo) ON INPUT,

ON RETURN, REA| PART UF X = (1eguues?g742002®e7974#"10000?
welg?logesme/y71) AND IMAGINARY PART OF X = (ges=e/g710
*1.00U00=e7 71:0...7071.1.uuu.-7071). POINT NUMBER 1
COKRESPONUS TU ZEKO PHEQUENCY, POINT NUMBER 5 CGRRESPONDS
10 Pls THE FULDING FREQUENCY, ;

TO DO AN INVERSE TRANSFUkM, THE CUSINE AND SINE SERIES MUST BE

Nej
FOLDEV OVER ABOUT POINT NUMBER ¢ + 4 BEFORE CALLING
COOL wITH SIGN = 44,00 SUBROUTINE FTPACK CAN BE USED T0 Do
THIS FOR YOUs CONVERTING AMPLITUDE AND PHASE BAUCK TO
SINE AND CQSINE [F NEED BE,

*N

THERE IS A SUALE FACTOR OFr 2 WH]CH COOL DOES NOT APPLY.

THE USER CAN APPLY THE SCALE PACTUR EITHER TO THE DIRECT OR TO

*N/2
THME INVERSE 1WANSFORMy OR APPLY A SCALE FACTOR OF 2 T0
FOR EXAMPLEs GJVEN THE INPUT UATA AS ABOVE, THE TWO STATEMENTS
CALL COOL(JeXrm149)
CALL COOL(3sXr0149)
WOULD CHANGE KEAL PART OF X TU (gesBoogosgesperpgesgesge) AND




OO0 a0on a0

aon

anoon

ao0aQoaoaon

aoonooon

10

20

0y 10 66
IHAGINARY PAN! OF X TU (0'00.'0'00'00000'00'00','

DIMENSION x(1)0 INY(36),Gt2)
TYPE COMPLEX X,Uow,HOLD
EQUIVALENCE (GoW)

INITIALIZE

LX = 2ewn
P]z:b,286185306

FLX = LX
FLXPI2=SIGNI*PI2/F (X
DO 10 Im1,n

INTCL) ® 2ewt(N=])

LUOP UVER N LAYERS

DO 4y LAYER = 1N
NBLOCK 8 pua(LAYER=1)
LBLOCK=LX/NBLOCK
LBKALE & LBLOCK/¢

START SERIES AND LOOP OVEK BLUCKS IN EACH LAYER

NNlD
Do 4y IBLOCK=g,NBLOCK
LSTART = LRLOCK*¢[BLOCK=y)

CUMPUIE W & CEXP(2,«PIeNW*SIGN] /LX)

ARGBFLOAIF(NW)'fLXPI?
G(1) = COSF(ARG!
G(2) = SINF(ARG?

THIS CAN BE SPEEDED UP BY USING A TABLE OF COSINES

COMI'UTE ELEMENTS FOR BOTH HALFS OF BEACH BLOCK

DO 2y 1=1,LBHALF
J ® ¢ START

K = JeLBHALF

Q@ = X(K)*W

X(K) = X(J)=Q
X(J) = Xtyyreu
CONTINUE

BUMP UP SERIEDS BY TWO (NOT ONE)
DO 32 1w2,N
1 =]
LLEINTCL) ,AND, NN
THIS LOGICAL UPERATION IS A MASK 10 DETECT A ONE IN
THE APPROPRIAIE BIT PUSITION OF NW, THJS STATEMENT WILL NOT
WORK ON 16M FURTRAN SYSTEMS,

IF(LL)3103103°

. =



OO0

QOO0

UY 16 ¢
CONTINUE
NW ® NWeINT(])
CONTINUE
CONTINUE
NW & NWOINT(I])
CONTINVE

START SERIGS 10 BEGIN FINAL REPLACEMENT

Nw & 7/
DO 3y Kep,x s

CHOOSE CORREC| [NDEX ANU SWITCH ELEMENTS IF NOT ALREADY
SW]TUnED '

NWishwey
sF(NW1eK)55,55,0,

HOLD=X(Nwq)

K{NW1)aX(K) -

X{K) = NULD

CONTINUE J

BUMP UP SERIES BY ONE

DO 7y Imgan

i1 = |

LLEINT(I) AND, NW
Nw & NweiNT(])
NW 2 NWeINTLI])
CONTINUE

RETURN

EnD




o

QOOOOCOQQOOOC

Uy 21 st
SUHRUUT I g CUOLUUNEINT, 40T sl o s x )
DIMENSTUN FOLIaX02,1), As(127)

UIMeENS TUN FANGLIox 02, 1TEST) LA (127)
MULTIUHANNEL VONVALINTION RQUT | Nk PR YTaPED DATA
INT IS tHE INFUT SURSET TAPE UF UATA UHANNELS
LUT 5 THE GUIPUT SHBSET TAFE OF DATA CHANNELS
L IS IHF nuMBER OF FILTER POINTS PQR £ACH CHANNFL
F IS The FiLlER MATREX
X IS A wiuknlnw ARKAY UONTAINING al LEAST 2*]TEST POINTS
ITEST 18 Ink NEXT Powek OF TWU LAKGER THAN L X*L
UswotbCnwArn JULY 1946

HEWILwL fo|

REW[NU jul

READCINTI LAY

Nel ar(D)

LxsLagoy)

[sum=| x+,

LAHLS ) sa=(L =)
ARLITECTUL )] A
O 1 Inu=1,18
LTESI=pea [y
lb(lSLM-llLSl:?a<.1
2 NCOOL=[NUY
GG Tu &
1 ConTiInng
Prlni 10U LK, L
1600 FORMAI(DYHYIBAD NEWS, ERHIR TN LUULCUN, LATA PLUS FILTER TQO LONG L
1X= ,léE,5n, Ls »lo0) '
310p
3 CONT intike
LTUe=1TEN1 /7
1T02P2=1 1004,
00 1u TN={,nN
CALL EHASE(Z%][1ED},X)
HkAU(lNlllvllpM)amzl.LY)
Vo 11 TL=g,L
11 x(?olL)=f(lH*(IL'1)*M)
CatL CﬂUL(MUUOLoA,-l.u)
X(101)=x(1,1:-X(4.1)/1Tt5]
X(251)=Uh0
DO 20 fL=g,(1a2
SAVE=(X‘10!ltST-lL¢2)'X(d;chSl-lL02)¢X(1.IL)'X(ZolL))/(Zt!TEsr)
X‘Q"L’=‘“1'IT=5T-II0?""2~“2nlTESi-IL*Z)*'Z-xu.ll.)"2¢X(2.1L)'
1*2) /4% igay)
20 X{1,1L)=35AyE
X(1o1102*1)=X(1olTOZo1th(2.1T02+1)/1rh5r
X(2,1102%112g,p !
Du 3y IL=1T02R2, ITEST )
x‘l'lL)'K(1nl|E5|n]L‘2)
30 !(Z.IL)=.x12:ITcar-1L+p)
CaLL COOL(NCOQL, X, 01,00
10 WPITE(IUI)tX(1.M),M=L.LX)
END FILE InT
REWIND JuT
REWIND InNT
RETURN
EnD

T
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10

Sud
OIm
EQu

A

Typ
M=
I8 =
CAL
F =
wseX
X(1
X(L
L

Do

Jd B
As,
ds,
21

Fi

G(q

Uy 419 66
HOUTINE CUULEN(NoX)
ENSIUN x(1),0L(2)
IVALENCF (GoW)

CUQLEY=TUREY FQURIER TRANSFURM ON REAL TIME SERIES
Je Fe CLAERBUQUY 28 JULY Y66

INPUI = THE HEAL TIME SERIES XC1)s 0o qa X(LX)

OUTPUI & TWE VOMPLEX FPOURIER TRANSFURM X(13sseeaX(q ¢ (X/2)

NUTE IHAT X MUST HBE IYPE HEAL IN I1HE CALLING PHOGRAM, AND
DIMENSIANED LXeq THERE (NUT LY},

SIZE RESTRICIION « LX MUSI| Bk L.Es 10384
(lek,, N MUSY BE L.k, 14’

LX JePletK=1)elJm1d/LX)
X4y) = SUM  ALK)*E

Kayq
FUK J & 35 X/¢eq

M

NU WHERE LX = 2

E COMPLEX XsAog,W,CONJG
N-1 °
2%¢M

L COUL(MsXy=1s) ‘
301915020653/ r nATF (L)

(1)

JSREALUX (1) )*ALIMAGIX 1))

+1)sREAL (WI=ALMAG(W)

® L/¢2*y

lu l.ZlLL "Ny,
Lel*e

S*(CUNYGIX(12Iex(y))

S (CUNYRIXLT M dex(y))

a l-l

B Fell

)3Chsr (Fy)

G(2)==SINF(F1)

8 =
x¢l
X(J
RET
END

Hew

) 3 A%(qergel”B

) m GUNJGLAD®(g,0q,)#CONELB)
URN
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SUBRUUTINE COOLHLBR(N,X)

THIS COMPUTES THE HILBERT TRANSFOKM OF A
USING THE WYPER<RAPID FOURJER TRANSFURM R
THIS PROGRAM IWANKS TO JON CLAERBOT

INPUTS «

N 3 LUG (BASE 2) OF NUMBEN OF DATA POINTY
REAL(X) = DATA SERIES TO ®E TRANSFORMED

OUTPVIS =
REALUX) 3 x AGAIN

IMAG(X) = WILBERT TRANSHOKM oF X

THIS CALLS Cuu

DIMENSIUN x(1)

TYPE COMPLEX X
CaLL CODL(N:X.';go)
M & 20eN

Ny & M/2e2

Do 1 [eMi.M

XCL) = (yeyge)

XC1) = yOex(y)
X(Mje1) =  Sex(Mieq)
CALL CUUL(Noxg’lgn)
RETURN

END

DATA SERIES,
OUTINE cooL

PO 22



DO TO000OO000O0O0000O000O00

10

0V 16 6
SUBRUUTINE COOLINQIN,X,SIGN,A,0)

THIS USES COUL TO COMPUTE THE FOURJER TRANSFORM OF TWO
TIMk SERJES AT ONCE

INPUTS =

N LOG (BASE 2) OF NUMBER OF DATA POINTS

X A COMPLEX ARRAY OF DATA, TRE FIRST T{ME SERIES ts sToRrep
IN THE REAL PART OF Xs AND THE SECOND IS STORED IN THE
IMAGINARY PART OF Xo IN UTHER WORDS, THE TWO SERIES ARE
MUL I IPLEXEU IN THE ARRAY X,

SIGN @ «qyp FOR DIRECT TRANSFORM, THIS SUBROUTINE
HAS NOT BEEN CHECKEV OUI FQOR TWO INVERSE TRANSFORMS
AT UNCE,

OVIPVIS »

A CONPLEX POURIER TRANSFURM UOF TRt FIRST DATA SERIES,
1s6es THE UNE STORED IN THE REAL PART OF X

B FOURIER VRANSFORM OF THME SECOND DATA SERIESs I.Ess THE
ONE STORED IN THE IMAGINARY PARI OF X,

BOTH TRANSFOKMS ARE OF LENGTH 2¢w(N=g) ¢ 3 (SEE COOL WRITEUP)

DIMENSION xlg}aAlg)eBLy)

TYPE COMPLEX x.lts,coNJG

CALL COOL{N,X,S1UN)

Atg) » WO (AL)4CONJGEXELI D)
Bg) & (ye,=eB5)olx(1)=CONJGIXEL) D)
Ma2eeN

00 gy XSz,m

ACKIB g BN (K)CUNJGIX(N®2°K)))
BUKI®( g PompeBIoIXKIaCONJGIXINOLOK)))
RETURN

€ND
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SUBRUUTINE COOLVULV(LX.XnLFaF)
DIMENS]ON F(1),X(2,1)
SINGLE=CHANNEL CONVOLUTION usiNng CooL

THIS Takes FOURIER TRANSFURM OF DATA aND FILTER, MULTIPLIES
THEM TOGETHER, AND TRANSFORMS BACK,

INPUTS o

LX LENGTN OF pATA
LF LENGTW OF FILTER
F FILTER COEFFICIENTS VIMENS]ONED FCLF) IN CALLING PGM
X DATA, pIMENSIQNEY X(N) IN CALLING PGM, WHERE
N 1S THE §MALLEST NUMBER WHICH IS 4 POWER oF 2 EXCEED NG

THE SUBROU1 INg RETURNS X CONvOLVED WITH F, OF LENGTH
LFeLxey, SYORED CLOSE=PACKED N X,

43 SEPTEMBER 1966 DWMCC

CHECK LENGTH KESTRICTION

NX=LFe| X

Do 10 121,43
Na2ww]

IF(NXeN) 20520510
CONTINUE

ERROR RFTURN = LENGTH Of FILTERED RECORD wouLD EXCEED LimIT

LFs=LF
RETURN

NCOOL =}
ERASE WORKING SPACE IN X

CaLL ERASE(N-NXox(LXo1))
MULTIPLEX DATA AND FILTER N X

Do 3¢ 181, X
JaLXxeJel

X(1,J) & X(J)
Do 3% l'lnNX
X(2,1) » 0.0

Do 49 183,LF
Xt2,1) s Feld

TRANSFORM AND FIDDLE
FNeN

CALL'COOL(NCOOLoxi-I.O’
X(1,1) = X(104)*X(2,1)/FN



0oan anNn

a0

50

70

X¢2,1) @ 0,0

N28N/2

00 50 1L®2,N2

1s (XII:N-ILG2)'XG2.N-IL02)0!(1
X¢2,1L) '(X(!gN'lLOZ)ttZ'X(Z:N-l
4 (4,*FN)

I TETR IS 1A
X(ioN201"X(1.N2‘1)'X(?oNZ‘l’IFN
Xt(2,N2¢3080,0

N228N2¢2

DO 60 ILSN22:N
X(1,1L)8X(q Nl *R)

X(2,1L08 =X(2,N*iL+2)

TRANSFORM BAUK

P

CALL COOL(NCOOL#»Xg¢1,0)
CLOSE=PACK FILYERED DATA- IN X

DO 70 1%1.NX

X(}) s Xt1,1)

RETURN
END

09 22 66
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SUBROUTINE FT2DCUOL(XaNsM,SIGNTY

c

C

c THO=DIMENSJONAL FOURIER THANSFORM USING COOL

c

c INPUTS » .

c XIN,M) ARRAY To BE TRANSFORMED |S IN REAL PART OF X,

c ANV THE JMAGINARY PART OF X IS ZERO,

c N FIRST DIMENSJON OF X

c M SECOND VIMENSION OF X

c SIGN] ® =3,5 FOR DIRECT THANSFORM, *31909 FOR INVERSE TRANSFORM
c

CAUTION =~==e FOR INVEKSE TRANSFORN, REAL AND IMAGINARY PARTS OF X MUST
c BE FOLDED AHQUT YWE-M|DDLE AS N COOL., SEE CoOOL WRITEUP,

c .

¢ OUTPV! » ' .

c ON RETURNs» REAL PART UF X CONTAINS COSINE TRANSFORM, IMAGINARY
c PART OF X CONTAINS SINE TRANSFQRM,

c

c De Wo MCCOWAN . MAY, 3760

¢

DIMENSJON x(N,M)
TYPE COMPLEX X
FN = N
FM 8 M
NCOOL = LOGFE(FNI/LOGF(2,)¢31,E=b
MCOOL = LORF(FMI/LOGF(2,)41,bwb
SN ® 1,/5QRTF(FN)
SM ® {,/SQRTF(FM)
DO 1 IMsy,M
CALL COOL(NCOOLsXtqs]IM)sSIGNI) 0
DO 1 IN % 4,N
1 XCINoIM) 8 XUgNoIMI®EN
CALL MATRAG3(X)NoM,X)
DO 2 INB1,N
CALL COOL(MCOQLoX(g¢(IN®1)%Mag),SIGNI)
DO 2 IMsyi,M
2 XCINoIM) & X(CINoIM)®SM
CALL MATRAG3(XsMaN,X)
RETURN
END



o000

o000 an

oy 16 #0
SUBRUUTINE FTIDCUOLIXsNoaMaLsSIGN])

THREE=DIMENSIUNAL FOURIER THANSFOKM USING CoOL

INPUTS »
REAL PART OF X CONTAINS THE THREE=DIMENSJONAL DATA TO BE
TRANSFORMED« TWE IMAGINARY PAKT OF X 1S ZERU,

X IS VIMENSIUNED N BY N BT L
SIGN1 ® e3,5 FOR DIRECT TKANSFORM AND ¢4, FOR INVERSE,

AUTION = FOR INVERSE IRANSFORM, UATA MUST gt FOLDED AHOUT THE

MIDDLE AS [N CooL === SEE CUQL WRITEUP,
QUTPUIS =

ON RETURN» REAL PART OF X CONTAINS COSINE TRANSFORM,
AND [MAGINGRY PART OF X CONTAINS SINE TRANSFOKM,

Di We MCCOWANS MAY, 906

DIMENSION x(N,MoL}
TYPE COMPLEX X

FL = |

LCOOL & LOGF{FL«/LOGF(2,0%3,E"b

SL » 4,/5QRTF(FL)

00 1 JLo3.L

CaLL FY2UCOOLIX 1, qsIL)sN,M,BIENI)

CONTINUE

CALL MATHAGI(XsN*"M,LsX)

DO 2 INsy,N

DO 2 Imeg,m

CaLL COOL(LCOOLs Xt gotINSLI*L*LIN"1)*LoNe1s4)0SIGN])
00 2 IL=1,L

XCINeIMoIL) ® XCAN, [Ms L2 OSL

CALL MATRAAJIXpLoNwM,X)

RETURN

END



10

30

40

50

SUBROUT INE MATRAOJ(A,N,Ms8)

DIMENSION a(2,1)0B(2,1)

MATRIX TRANSPUSE ON COMPLEX ARRAYS

MASK1m00U0000000VUQ0001R
MASK2m7277772777777/777768
NMEN*M

DO LU I=1,NM
B(lll"“lol’QOR'"QSKI
B(2,1)=A(2,1)

JF=0

ASSIGN 30 TO KSHWHM

DD 100 I3g,NM

GO TO KSWH, (3gs5u)
JF=JF+g

LL=B(1,JF) AND,MASK]
IFCLL)I30+30,49p

JOo=Jdt ey

ASSIGN 5u TO KSWH
TEMPE1abH (1, JF)
TEMPBZ2=8(2, JF)
J1=JOIN¢XMDUF(J0:N)'M¢1
TEMPA1=B(]1,J1)
TEMPAZ:B(Z,J1)
8(1,J1)=TEMPBY +AND ,MASK2

- B(2,J1)%TEMPB2

60
100

TEMPH1aTEMPAL
TEMPB2aTEMPAZ
JO=Jleg

IF(J1=gF 160,060,100
ASSIGN 3u TO KSwWH
CONTINUE

RETURN

END

09 22 oo
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SUBROUTINE SPECTRUN(IT,JT)KToXsLsLFs5)
DIMENS]ON A(201)08(2,1)

DIMENSION X(2oNoNgLFYsX{ZoOLX+2)28(2oLF)

SPECTRAL MATHIX FOR TAPED DATA

DATA NMUST BE A pOWER OF TWD [N LENGTM AND ON TAPE 1T IN SUBRET
FORMAT, SPECIRAL MATHIX IS RETURNED AS A F83 COMPLEX MATRIX

IN Xo

1T=INPUT SUBSEY TAPE'
JT=SCRATCH ‘o .
KT1=SCHATCH

XeWORKING ARNAY AND RETURNED SPECTRAL MATREX
LeNUMUER OF 1IMES TO BMOOTNM N
LF*RETURNED LENGTM OF SPEUTHAL ESTIMATES .
S=wOHKING ARKAY

PROGRAM TOO CUMPLICATED TU DESCRIHE,..

REWIND 1T
REWING uT
REWIND RI
READCITILOSTaN,LA
LxgegeLx *
NCODLILUUF(FLOAltGLXf)?LUGF(z.u)01.uE-°
NSOENeN

LFsLX/2ew o -

LXx2P2aLXeep

Lx4sdug X

LX2P2T282e x2p2 !
LXPgrLxe)

LX2P3aL X2¢3

I1DCep

LFgmgoLy

WRITECYTILOSY,NoLX2P2

WRITE(KTILOST  NolX2P)>

DO 10 IN=g,N

CALL ERASE(LX4s X2

READCITICXC oMIaMu g, X}

CALL COUL(NCUOL®34Xsvg.y!
MRITECUT I (x(M)onBy,LX2P2)
WRITECKT I CxiMI oM g, xpP)

CONTINUE

END FILE Jv

END FlLe KT

REWIND 1T

REWIND V1

REWIND K1

D0 1 INs1,N

IND®INeg

CALL SKIPREC(INsRY)
READIKT2(Xcrt) Moy, | x2P2}

CaLl DOTEMIXo XoLXP o (L X2P3))

CALL SMOUTWIX(LX2P3),LXP1sL}

CALL DISCOICIDC)1,X(LX2PIISLF2)

1DC=1DCe?

DO 6y JUN®INDaN



6p

26

28
25

Uy 16 ¢o
READ(KT) (X (M) MBLXPI, L XLP2T 2)
CaLL DOTEM(XaX(LXPIY,LXPsX(LX2P3))
CALL SMOUTH(X(LXZPJ).LXP10L’
CaLL 015063(lDCo;.X(LXQPé)oL’2)
IDC=lDCey
CONTINVE
REWIND K
I1SAVEsK]

KTeJT

JTE[SAVE

CONTINVE

IDCEU

Do 25 INwq,N
INDENey

CALL DlSUbS(!DCou.SoLF?)
IDC=ipCey ‘
INDEX®IN®( [N=g )N
Do 26 IL=q,LF

X010 INDEX)=S(g0]L)
Xt2, INDEX)=St2, L)
INDEX=INUEXeNSQ
CONTINUE

D0 27 UNSINLaN

CALL DISCO3CIDCIy,SoLF2?
IDC=]CCeY
INDEXg=INe(yNpq )y
INDEX2BYNe | INpqd*y
0 2t IL=g,LF
X(10INDEXq)8S¢404L)
X(2,INDEXg)ES (22 1L )
X(30INDEX2)8S(g0 i)
X(2+ INDEX2)meg{ 0] )
INDEX 1= INDEXy#NLU
INDEX 2= I NDEX26NSU
CONTINUE

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE DUTEMIX, Y,L,2)
DIMENSION x(2,L02¥(2,L)02(2,L)
Do g IL=1,L
SAVERSX (Lo JLIeY 2, ILYeX(2o0L00Y (2, IL)
SAVEIsX(1,1L)0Y e, 1L X2, 1L0wY (1, ]L)
(1 ILYSSAVENR ‘
2(2,1L)®5AVE]
RE TURN
END

SUBROUTINE SMOOTH(X,LENGTH,L?
THIS HANNING RQUTINE THANRS TU J CLAEHRBOUT

DIMENSION x(2,LENGTH)
LFSLENGTH

LFMisLFey

DO 3 L%,
X(10108ye5eX0gs1)ugebextysg)
X(2,1)=y4
X(1oLF)80.5txc1oLr)00.5'X(1.LF-1’
X(2:LF)®p,

IND=¢

DO 2 JL=s,LFNMg,
X(20JL)-u.zb'x(ZOJL'i)Ouosfx(20JL1*0.25'X(20JL*1)
X(1.JL3'U.;5*!110JL-1)00.5*x(1uJL)*0.25'X(1.JL*1)
X(1s INDI®X(qo L)

X2, INDISX (20 gL )

IND=INDey

CONTINUE

XC1sIND)BX (3o F)

X(2, INDIBX (24 F)

LFELF/24) i

LFMi3LF=y

CONTINUE

RETURN

END
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SUBROUTINE DISCQQIIBLOCKolSHlTCHoXoN)
DIMENSION y(N)

THIS IS THE suL Djsg DRIVER RUUTINE WRITTEN IN CODAP=1
IT TRANSFERS WORDS BETWEEN CORE AND THE DIsc

ISWITCH®L GIVES A WRITE ON THE DISC
X IS THE CORE ADDRESS

c
c

c

c

c

c ISWITCH=0  GIVES A READ FROM THE DJsc
c

c

c N IS THE NUMBER OF WORDS TO TRANSFER

c

Qti'iiiitiiiiit."QQi"t'i'ii'it'i't'itii'iitit'tiiiiii'i'ttiitttiiti'i

c

c .

c THIS ROUTINE MUST gg SUPPLIED BY THE USER OR INCLUDED It BINARY
c

c




aan

SUBROUTINE ERASE(N,X)
DIMENSION X(N)

EHASE N WORDS N X

DO 1 Isi.N
1 X¢1)%0,V

RETURN

END

09 22 66
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SUBRUUTINE SKIPNEC(No ITAPE)
SKIP w LOGICAL RECORDS ON TAPE [TApPE
0O 1 J=i.N
1 READ(ITAPE,L0s7
RETUKRN
END

09 22 66



APPENDIX B - PROGRAM WRITE-UPS

FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATION TO THE
COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA




SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

A. IDENTIFICATION

Title: Hyper-Rapid Specialized Cooley-Tukey Fourier
Transform '

COOP Identification: G612-COOL

Category: Fourier Transform

Programers: J. F. Claerbout. D. W. McCowan, J. L. Gibson,
and E. A. Flinn

Date: 26 February 1966
B. PURPOSE

To compute the Fourier series expansion of a real-or
complex-valued date series, or the data series from the

complex-valued Fourier series expansion.
C. USAGE

l. Operational Procedure and Parameters:

This is a CODAP subroutine with a FORTRAN-63 calling
sequence CALL COOL (N, X, SIGN). X is a complex array
used for the data series and the transform; the number
of elements of X is L = 2N: SIGN = -1.0 for a direct
Fourier transform, and +1.0 for an inverse Fourier

transform (but see below for arrangement of data).

For the direct transform: on input the real part of
X contains the data series and the imaginary part of X
is zero. On return, the Fourier cosine series expansion
is in the real part of X. and the Fourier sine series
expansion is in the imaginary part of X. Each contains

only 2N-1 + 1 non redundant points; the cosine expansion

. . s N-1 .
1s symmetric about point number 2 + 1 and the sine

- B-1 -



transform is antisymmetric about this point.

For example: N = 3 and data = (0., 1., 0., O.,

0., 0., 0., 0.); Re(Xx) = (0., 1., 0., 0., 0., 0., 0., 0.,):

Im(x) = (0., 0., 0., O., 0., O., O., 0..) on input. On
return, Re(X) = (1.000, .7071, 0., -.7071, -1.000,
-.7071, 0., -.7071); Im(X) = (0., -.7071, -1.000,
-.7071, 0., .7071, 1.000, .7071). Point number 1 corre-

sponds to zero frequency; point number 5 corresponds to m .

For inverse transform: the cosine and sine series

must be folded over about point number 2"V 1 betora

calling COOL with SIGN = +1.0 .

There is a scale factor of Z—N which COOL does not

apply. The user can choose to apply the scale factor

LI

either to the direct or to the inverse transform, or to

N/2 to both. For example, if COOL

aﬁply a factor of 2~
were called with the transform example above, the result
would be Re(X) = (0., 8., 0., 0., 0., 0., 0.) and

Im(X) = (0., 0., O., O., 0., 0., 0., 0.) .

Space Required: Approximately 20010 exclusive of X.

The largest series that can be transformed in a 32K

core machine is 8K.

Temporary Storage Required: None. Other versions of

this program have an auxiliary storage for the cosine
table and/or a table of bit-reversed numbers. COOL
computes its sines and cosines as it goes, and uses an
algorithm due to J. F. Claerbout for calculating the

bit-reversed numbers.

Printout: None.

Error Printouts: None.

- B-2 -




10.

11.

12.

ISP

14.

15.

Error Stops: None.

Input and Output Tape Mountings: Nct Applicable.

Input and Output Formats: Not Applicable.

Selective Jumps and Stops: None.

Timing: Time is proportional to N'2N . Transforming

8192 on the CDC 1604-B requires 25.0 seconds.

Accuracy: Calling COOL returns the original to about

nine decimal places.

Cautions to User: See Operational Procedure above.

Configuration:

References: J.

Standard COOP.

W. Cooley, 1964 "Harm - Harmonic Analy-

sis; Calculation of Complex Fourier Series’': IBM

Watson Research Center, Yorktown Height, New York.

JO

W. Cooley and J. W. Tukey, 1965, An

Algorithm for the Machine Calculation of Complex

Fourier Series:

Math. of Comp., Vol. 19, pp. 297-301.

C. M. Rader, 1965, "Algorithm for Rapid

Digital Ccmputation of a Spectrum,” MIT Lincoln Labo-

ratory, Lexington, Massachusetts.

D. W. McCowan, 1966. "Practical and Compu-

tational Aspects of Fourier Transforms," Teledyne, Inc

Alexandria, Virginia.

Writeups of the following SDL programs

COOLTWO:
COOLEST:

COOLEXT:

FT3DCOOL:
FTPACK:

¥

Does two Fourier transforms at once.
Does Fourier transform of data series
of length other than a power of 2.
Does Fourier transform of 16384 data

points. '

Three-dimensional Fourier transform
Driver for COOL (converts amplitude and
phase to sine and cosine, does the
folding, etc.)

- B-3 -
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METHOD

Given a time series X{I), 1, L (where L = ZN) assumed

to be periodic outside the given range, COOL constructs

N-1

JK
Y(K) = SUM X{(J}*W K=0,,L -1

J=0
where W = exp (-2 i/L) for time~frequency transform, and
W = exp (+2 i/L) for frequency-time transform. The algo-

rithm is efficient, requiring N‘2N multiplications rather

than ZZN

< Be4 -




A.

CD

SE1SMIC DATA LABORATORY
ALEXANDRIA. VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICATICON

Title: Two and Three Dimensional Fourier Transform Package

COOP Identification: G615 FT2DCOOL, FT3DCOOL

Category: G6 Time Series Analysis
Programer: D. W. McCowan

Date: 20 April 1966

PURPOSE

The subroutines in this package compute two and three
dimensioral Fourier transforms. Their names are: FT2DCOOL

FT3DCOOL, COOL. MATRA63, and SCALE. As with COOL, the

dimensions on the data must be a power of two.

USAGE

1. Calling Sequence:

CALL FT2DCOOL (X, N, M, SIGNI)

and

CALL FT3DCOOL (X, N, M, L, SIGNI)
2. Arguments:

X, the complex array in which the data is supplied and
in which the Fourier transform is returned. If
real data is supplied, it must be put into the real
part of X and the imaginary part must be erased.

N,M,L, the dimensions of X. Each of these numbers must bhe
a power of two. The number of complex points in the
Fourier transform will be N/2 + 1, M/2 + 1. and
L/2 + 1 in each direction.

SIGNI, a switch determining the type of transform to be

performed. SIGNI = -1.0 gives an direct transform
(time to frequency)., and SIGNI = +1.0 gives the
inverse.

- B-5 -



3. Space Required: 500 locations

4. Temporary Storage: None

5. Alarms and Printoutis None

6. Error Returns. Ncnhe

7. Error Stops: None

8. Tape Mcuntings: None

9. Formats: None

10. Jumps and Stop Settings: None

11. Time Required: Three-dimensional Fourier transforms

require NM + NL + ML one-dimensional Fourier transforms.
Two-dimensional Fourier transforms require N + M cne-
dimensional Fourier transforms. For the timing of cne-

dimensional Fourier transforms, see Refirences.
12. Accuracy: Same as COOL.

13. Cautions to Users: None

1l4. Equipment Ccafiguration: Standard COOF

15. References: Writeup of UES G612 CooL 3/30/66

D. METHOD

The direct 2 and 3-dimensional Fourier transforms are
defined as:

N-1 M-1
Al§.,5.) = =— 2 y X(k. k) w. l1ik1 w3k,
132 L _ /| s ] 2
L SRSEORTY -
i 2 i
g
and ;
N-1 M-1 L-1
. 1
A(Y. . 9..3.) = Y YRk k)
172733 . 510"
S = = =0
k=0 k,=0 k,

=i,k — 35K -4 %,
- Bl - BwW_
B-6 W1 1w, “272 W, 373



Where Wl = exp(271/N); W2 = exp(2mi/N); w3 = exp(2m1/L)

The two-dimensional transform is broken up 1nto N + M
one-dimensional transforms and the three-dimensional trans-
form 1s broken up into L twoc-dimensional transforms and NM

one-dimensional transforms.

- B =



A.

SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICATION

Title: Fourier Transform of Two Data Series Simultaneously

COOP ldentification: COOLTWO

Category: G6 Time Series Analysis
Programer: E. A. Flinn

Date: 10 June 1966

PURPOSE

To compute the Fourier series expansion, using COOL

(q.v.), of two data series simultaneously.

USAGE

k.

Operational Procedure: This is a FORTRAN-63 subroutine

with calling sequence

CALL COOLTWO (N, X, SIGN, A, B).
Parameters:

N is the log (base 2) of the number of elements 1in X:

X contains the two data series, multiplexed in one
complex array, so that Re(X) contaiws one series and
Im(X) contains the other:

SIGN = -1.0 ." The program has not yet been checked
‘out for inverse transformation;:

A is the complex (cosine and sine) transform of the data
series stored in the real part of X:

B is the complex Fourier transf- rm of the data series
stored in the imaginary part of X;

A and B are both of length 2** (N - 1; + 1

Space Required: about 7010 excluding arrays.
FS

-~ BsB -
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4. Temporary Storage Requirements: None

5. Printouts: None

6. Error Printouts: None

7. Error Stops: None

8. Input and Output Tape Mountings: None

9. Input and Output Formats: Not Applicable

10. Selective Jump and Stop Settings: Not Applicable

11, Timing: Timing is pProportional to N'2N; transforming
8192 data points on the CDC 1604-B requires 25.0 seconds.

12, Accuracy: Same as COOL

13. Cautions to User: This program has not been checked out
for inverse transformation. This program does not
apply the scale factor ZiN, since some users may wish
to apply the scale factor to the inverse, rather than
the direct transform. The number of data proints must
be a power of 2.

14. Configuration: Standard COOP

15, References: Writeup of UES G612 COOL

D. METHOD

The method is due to J. W. Cooley (see keference 2 in

main body cf this report)
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A.

SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICATI1ON

Title: Spectral Matrix Estimates

COOP Identification: G618 SPECTRUM

Category: Time Series Analysis
Programer: D. W. McCowan )

Date: 10 July 1966 p

PURPOSE

This is a package of three FORTRAN-63 subroutines for
computing an estimate of the spectral matrix for N channels
of data stored on magnetic tape. It uses the hyper-rapid
Fourier transform routine COOL, and makes use of two tapes
and the disc to cut running time to a minimum. The names
of the three routines in the package are: SPECTRUM, DOTEM,
and SMCOTH. 1In addition to these, three more subroutines
are assumed to be on the system tape; they are: COOL,
SKIPREC, and ERASE. Since all other routines are called
internally by SPECTRUM, only the calling sequence for it
will be given.

USAGE

1. cCalling Sequence:

‘Call SPECTRUM (IT, JT., KT, S, NS, LF, X)

2. Arguments:

IT, the input subset tape number on which the N channels

of data are written. The length of each channel
must be ‘exactly a power of two.

JT, the number of a scratch tape.

KT, the number of a scratch tape.

- B-10 -




S,

NS,

LF,

lo0.

a triply subscripted FORTRAN-63 complex array used both
for internal manipulation and to return the computed
spectral matrix as a N by N by LF complex array with
subscripts varying in that order. Here N 1s the number
of channels read from the input tape label and LF is the
smoothed length of each spectral estimate. This array
must also be 4*LX+4 locations in length, since it is
also used for internal computations. LX is the length
of the input data channels read from the input tape
label. Remembering that there are two locations used
for each complex number, the total dimensions on S in
the main program must be 2*N*N*LF or 4*LX+4, whichever
1s the larger. It is usually convenient to dimension
it as a complex N by N by L F63 array in order to fa-
cilitate use. L here is a number chosen so that S will
be large enough as described above.

the number of times to apply the hanning smoothing
operation to the original estimates.

the returned length of the spectral estimates. This is
computed from the formula:

LF = (LX/(2**NS) + 1
LF must not be larger than 129

an array used for internal manipulation, containing at
least 2*LF locations.

Space Required: 502 locations

Temporary Locations: None

Alarms or Special Printout: None

Error Returns: None

Error Stops: The subroutines stops if length of filter
Plus length of and channel exceeds 21-

Tape Mountings: Sée Arguments

Input and Output Formacs: See Arguments

Jump Settings: None

N
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1l1. Time Required. A 1lO-channel, 4096-point. NS = 6 case
takes approximately 10 minutes of 1604
time.

12, Accuracy: Single precision

13. Caution to lsers The subroutine as written requires
that the data series should contain
a number of points exactly a power

of two.

14. Equipment Configuration: 3tandard COOP

15. References: Writeup of subroutine UES G612 COOL. 6/1/66
Writeup of program UES 224 SUBSET

Stockham. T. G.. 1966, High Speed Convolution
and Correlation, AFIPS Proceedings

D. METHOD

The spectral matrix elements Sij(k) are usually defined
as Fourier transforms of correlation functions R‘j(t). How-
ever, it must be realized that these correlations are transient
correlations whex»e the functions are considered to be zero
outside the regicn of interest and 100% lags are taken. They

are defined as follows

T-1-t
R,_it, = ) x (1 x,ir + ¢t
1] B 1 J
=0
T-1
i N
R, Y = z X it X, {t -t} = R,,(t’
13 1 j ji
=t
The spectral matrix element 1s then
T-1 T-1 T-1 T-1-t
. tk :
= Ty X AT -t W= o+ z x {7) x, (r+t)
Si](k} I Z x1 ! J\ 2 ; 1 i,
t=0 -=t t=1 r=0 Ltk
2
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This can be shown to be equivalent to:

r*»
= P

where

T-1
_ -tk .
F (k) = z x (t) W ,

2
=0

This is recognized as the Fourier transform of the input
data computed over twice its length with zeros filled into
the second half. The Cooley-Tukey hyper-rapid Fourier
transform routine COOL is used to provide the high speed
necessary here.

Each spectral matrix element is originalilly T + 1
complex points long between DC and the folding frequency.
It is then smoothed with a banning window NS times to its
final length of LF points.

1
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SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

IDENTIFICATION

Title: Hyper-Rapid Specialized Cooley-Tukey Fourier Transform
(direct only)

COOP ldentification: G617-COOLER

Category: Fourier Transform
Programer: J. F. Claerbout

Date: 27 July 1966 '
PURPOSE

To compute the Fourier series expansion of a real-valued

time series.
USAGE

1. Operational Procedure: This is a FORTRAN-63 subroutine,

with calling sequence CALL COOLER(N,X). This subroutine
calls COOL.

2. Parameters: On input, X is a real-valued time series

containing LX points, where i1X = 2Na N is restricted
to be 14 or less. On return, X contains %LX+1 complex
points of the Fourier transform of the data, with the

real and imaginary parts multiplexed together - i.e.,

on return X can be thought of as a complex array. with
the cosine transform in the real part and the sine
transform in the imaginary part.

X must be dimensioned at least LX+2 in the

calling program. (i.e., %LX+l complex points)

3. Space Required: very little

:
4. Temporary Storage Required: none
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10.

11.

12.

D, 3

14.

Printout: none

Error Printcuts: none

Error Stops: none

Input and Output Tape Mountings: not applicable

Input and Output Formats: none

Selective Jumps and Stops: none

L . . L N .
Timing: Time is propcrtional to N.2 ; transforming

16384 points on the CDC 1604-B requires 45.0 seconds.

Accuracy: About nine decimal places

Cautions to User: On return, the real and imaginary

parts of the transform are multiplexed together. X must
be dimensioned at least LX+2 in the calling program, not

LX. This subroutine will not do an inverse transform.

References: Writeup of UES G612 COOL.
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SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMPUTING SECTION

A. IDENTIFICATION

Title: Multichannel convolution in the frequency domain,
for taped data.

COoOP Identification VES G620 COOLCON

Category: G6 Time Series Analysis
Frogramer: D. W, McCowan

Date: 22 September 1966

B. PURPOSE

This subroutine convolves data channels on the input
subset tape with a multichannel filter stored in core,
working entirely in the frequency domain. The result is
written in subset format on another tape.

C. USAGE

1. oOperational Procedure This is a FCRTRAN-63 subroutine

with calling sequenue:
CALL COOLCON(INT,IOT.L.F X}
2. Parameters
INT 15 the number of the input tape unit.
10T is the number of the output tape unit.

L is the number of points in the filter (see restriction
below) .

F .s the multichannel filter, dimensioned F(N,L} in the
calling program, where N is the number of channels on
the input subset tape.

X is a working array. dimensioned X{(2,IT) in the calling
program, where IT is the least power of 2 such that

ZIT > L + LX

where LX is the number of data points in the 1input
channels.
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Restriction on length of data and length of filter.
LX + L must not be greater than 213 (BK) .
3. Space Required: Very little in addition to arrays.
= Telired

4. Temporary Storage Required 2‘2IT working space plus

127lo for the subset tape label.

5. Printout: None.

13

6. Error Printouts: If L+1LX>2 these numbers are printed
with an error message .
7. Error Stops: If L+Lx>213, the subroutine stops the
_—Tbs

calling pr-.yram.

8. Input and Output Tape Mountings: See Parameters above.

9. Input and Output Formats: Compatible with UES Subset

(See Writeup).
10. Selective Jump and Stop Settings: None.

11. Timing: Dominated by two Fourier transforms using COOL
for each channel to be filtered. The length of trans-
form is 217 (See Writeup of COOL).

12. Accura:z: This yields the same numbers, to ten decimal
piaces which would be computed by convolving the

filter and data series in the usual way.

13. cautions to User: None.
==atlons to User

l4. cConfiguration: Standard cCooP.
= _—.Jiration

15. References: Writeups of UES G612 COOL, UES 224 SUBSET.
anad UES G617 COOLER. '

D. METHOD .
For each channel to be filtered, the subroutine erases
+
ZIT 1 locations of X, and multiplexes the filter and the
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METHOD (Contd.)

data channel in X, starting at the beginningi' Note that
as far as COOL 1s concerned, X is a complex array with
data in the real part and filter in the imaginary part.
COCL is called, and the logic of COOLER (g.v.) is used to
form the Fourier transform of the filtered channel in X.
COOL is called again to get back to the time domain, and

the filtered channel is written on the output tape.

The subset label is copied from the input tape to the

output tape at the beginning of the subroutine.



A.

(Con

SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

. DIGITAL COMPUTING SECTION

IDENTIFICATION

Title: Hilbert transform of periodic data

COOP_Identification: UES G619 COOLHLBR

Category: Gb6 Time Series Analysis
Programer: E. A. Flinn and J. F. Claerbout

Date: 23 September 1966
PURPOSE

To compute the Hilbert transform (quadrature function)
of a time series. Since COOL is used, the time series is

assumed to be periodic outside the range of definition.
USAGE

1. Operational Procedure: This is a FORTRAN- 03 subroutine,

with calling sequence: CALL COOLHLBR(N,X). This tub-
routine calls COOL.

2. Parameters: N is the log {(base 2) of the number of

data points. X is the data, dimensioned at least
2N in the calling program, and typ~ complex there.

On input, the real data series must be
stored in the real part of X, and the imaginary part
must be zero. ‘

On return, the real data series is stored
in the real part of scaled up by 2N—l. The Hilbert
transform is stored in the imaginary part of X, also

scaled up by ZN—l.
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Space Required: Very little in addition to the array

+
for data, which requires 2N 1 locations 1n the calling

program.

4. Temporary Storage Required: None

5. Printout: None

6. Error Printcocuts: None

7. Error Stops: None

8. Input and Output Tape Mountings: Not Applicable

9. 1Input and Output Formats: Not Applicable

10. Selective Jumps and Stops: None

11. Timing: Dominated by two calls to COOL

12. Accuracy: The data is returned correct to ten decimal
places.

13. Cautions to User: The data must be arranged as under
(2) above.

Notice that as far as this subroutine
is concerned, the data is periodic outside the range of
definition. End effects may cause answers which the
user does not expect. For example, if the input is a
pure sine wave, the user expects the quadrature to be
a pure cosine. Using this subroutine, this turns out
to be the case only 1f the data series contalns an
integral number of cycles.

14. References: Writeup of UES G612 COOL.
METHOD

The Hilbert transform of a function has a Fourier

2
transform which is (-1)*? times the Fourier transform of
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METHCD (Contd.)

the function. CO(L returns the real and imaginary parts of
the Fourier transform of a function calculated from zero
to 2m, so that the rezl Farl 15 symmetric about the middle
and the 1imaginary part 1s antisymmetric.

1f the Fourier transfcrm of the function 1s A+iB, the
Fourier transform of the Filbert transform 1s -B+iA. All
COOLHLBR does 1s erase the seccnd hzlf of the Fourier
transform (the part from v to 2r". half-weight the end
points. and call COOL again to transform back to the time

domain.

9

The scale factor 2 comes from the fact that CooL

gives the unnormalized traasform,

w
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SEISMIC DATA LABORATORY
ALEXANDRIA, VIRGINIA

DIGITAL COMFUTING SECTION

A. iIDENTIFICATICN

Title: Fast convolution of two time series using COOL

CcCOF Identification. UE3 COOLVOLV

Category: Time series analysis
Programer: E. A. Flinn and D. W. McCowan

Date: 23 September 1966
B. PURPOSE
To form the convolution of two time series, not by
the usual polynomial multiplication algorithm, but by
forming the two Fourier transforms (using COOL), multi-

plying them together, and transforming back to the time
domain. This is faster than the usual procedure when

LX'LF >> 4(2N + 1) (LX + LF)
where LX is the dataz series length, LF 1s the filter
impulse response length, and N is the log (base 2) of
LX + LF.
C. USAGE

1. Operational Procedure: This 1s a FORTRAN-63 sub-

routine, with calling sequence:
CALL COOLVOLV(LX X, LF ,F)

2. Parameters:

X is the data series to be convolved, dimensioned at
J+ . .
least 2J E in the calling program, where 2J is the

smallest power of two larger than LX + LF

LX is the length of the data series to be convolved.
F is the filter to be convolved with X.
LF is the length of the filter.
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3. Space Required: 300lO plus arrays.

4. Temporary Locations Requirecd: None beyond filling ovt

X to the first power of twc greater than LX + LF .

5 Alarms or Specisl Frintout: None

6. Error Returns: If LX + LF > 213, LF is replaced by -LF

and control is returned to the calling program.

7. Error Stops: None

8. Tape Mountings: None

9. Formats: None

10. Jump and Stop Settings: None

11. Timing: Dominated by two calls to COOL for LX + LF

points each time.

12. Accuracy: Gives the same results as polynomial multi-

plication to ten decimal places.
13. Cautions: None

14. Configuration: Standard COOP

15. References: Writeups of COOL, COOLCON. and COOLER

D. METHOD

The same method is used as used in COOLCON.
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APPENDIX C - PROCEDURES

FINITE FOURIER TRANSFORM THEORY AND ITS APPLICATION TO THE
COMPUTATION OF CONVOLUTIONS, CORRELATIONS, AND SPECTRA




PROCEDURE FOR CALCULATING A CROSS SPECT(UM AND A CROSS~CORRELATION

LY
2

3)

4)

5)

Dimension X(2¥LX+2), CX(LX+1), Y(2¥LX+2), C¥(Lx+1)
Equivalence (X,7X), (v,cy)
Type Complex CX,CY
LX = 2%%)p

Erase 2*LX+2 points in both X and Y.
Read channel 1 into X and channel 2 into Y.

Call COOLER(N+1,X)
Call COOLER(N+1,Y)

Go through the LX+1 complex points and overlay CX (or CY)

vith:
CX(I) = [CONJG(Cx ,)*CY(I)]/LX
that is,
Re[CX(I)] = (RelCX(1)T*Re(CY(I) I+ImICX (1) *Im[CY(T)]) /LK
ImfCx(1)] = (Rercx(I)]*Im[cy(I)]-Imrcx(z)1*Re[CY(I)])/Lx

The cross-spectrum between channel 1 and channel 2 (which
is the complex conjugate of the Cross-spectrum between
channel 2 and channel 1) is now in CX, LX+1 points in
length. The co-spectrum is in the real parxt of CX and the

quad-spectrum is in the imaginary part of CX.

To get the cross-correlation, £ill in the other LX-1 points

in CX and call COOL:
DO 1 I 3 ]-le-l
1 CX(LX+I+1) = CONJG(CX(LX-I+1))

CALL COOL(N+1,CX,-1.0)
The cross-correlation is in the real part of CX, purely

real and 2*LX points in length.

NOTE: CX must be dimensioned 2*LX if the cross-correlation

is to be calculated.
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PROCEDURE FOR CALCULATING AN AUTG-SPECTRUM AND AN AUTO-

CORRELAT ION

1)

2)

3)

4)

Dimension X(2*LX+2), CX(LX+1)
Equivalence (X,CX)
Type Complex CX, CONJG
LX = 2%*N
Erase 2*LX+2 points in X:; the extra compléx point is needed
by COOLER to “eturn the point at the folding frequency.
Read the data channel into X(1) through X(LX) .

call COOLER(N+1,CX). The Fourier transform of X and the
necessary zeros on the end of the data is now stozed in
CX, LX+1 complex points long, representing frequencieas

between DC and the folding frequency.
Go through the LX+1l complex points in CX, and:

CX(I) = CONJG(CX(T))*CcX(I)1/LX

that is,
RelCX(1) ] = (Rafcx(l)Wz + Im[cx(I)]z)/LX
ImfcX(1)] = 0.0

The auto-spectrum is the real part of CX, purely real

and LX+1 points in length.

To get the auto-correlation, fill in the other LX-1
complex points in CX as required by COOL for inverse

transforms, and call COOL:
po 1 I = 1,LX-1
1 CX(X+1+I) = CX(LX-I+1)

CALL COOL(N+1,CX,-1.0)
The auto-correlation is in the real part of CX, purely real

and 2*LX points in length.

NOTE: CX must be dimensioned 2*1X if the auto-correlation

is to be computed.
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PROCEDURE FOR CALCULATING THE CONVOLUTION OF TWO SERIES

1)

2)

3)

4)

5)

Dimension X(L+2), CX(%i+1), F(L+2), CF(kL+]1)
Equivalence (X,cXx), (. ACF)
Type Complex CX,CF,CONJG
L = 2%y

L bere is the next power of 2 larger than LX+LF, ,the combined

length of the data and the filter.
Erase L+2 points in X and F.

Read the data into X (1) through X(LX) and the filter impulse
response into F(1) through F(LF).

Call COOLER(N,CX)
Call COOLER(N,CF)

Go through the %L+1 complex points in CX, and:

CX(I) = [CX(I)*CF(I) I/LX

that is,
RelCx(1)] = (Rercx(x)]*Rercr(r)]—xm{cx(x)]*IerF(I)])/Lx
Im[CX(I)] = (Rercx(x)]*Imrcr(r)]+ReFCF(I)1*Im[cx(I)])/Lx

The Fourier transformof X convolved with F is now in CX.

Fill in the rest of the points in CX as needed by cooL,
and transform back. Note again that if the actual ~onvo-
lution is desired instead of the Fourier transform, cXx

must be dimensioned L.
DO-1 T =4, HL-a
1 cx(hL+1+1)
CALL COOL(N,CX,~1.0)

The convolution of X with F is now in the real part of CX,

purely real, and LX+LF-1 points in length.
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